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Abstract

A methodology to compute cumulative probability distribution functions (CDF) of fatigue life

for different ratios, r of applied stress to the laminate strength based on first ply failure criteria

has been developed and demonstrated. Degradation effects due to long term environmental

exposure and mechanical cyclic loads are considered in the simulation process. A unified time-

stress dependent multi-factor interaction equation model developed at NASA Lewis Research

Center has been used to account for the degradation/aging of material properties due to cyclic

loads. Fast probability integration method is used to perform probabilistic simulation of

uncertainties. Sensitivity of fatigue life reliability to uncertainties in the primitive random

variables are computed and their significance in the reliability based design for maximum life

is discussed. The results show that the graphite/epoxy (0/+45/90) ° laminate with ply thickness

0.125 in. has 500,000 cycles life for applied stress to laminate strength ratio of 0.6 and a

reliability of 0.999. Also, the fatigue life reliability has been found to be most sensitive to the

ply thickness and matrix tensile strength. Tighter quality controls must therefore be enforced



on ply thickness and matrix strength in order to achieve high reliability of the structure.

Introduction

Assured long term behavior with a specified reliability is a prime criteria for High Speed Civil

Transport (HSCT) engine structures/components. HSCT engine components are required to have

a reliable life of at least 18000 hours. High temperature polymer matrix composites are being

considered as prime candidates for some of the propulsion structure components in the HSCT.

Therefore, it is of considerable importance to develop methodologies to predict long term

behavior of high temperature polymer matrix composite materials (PMCs).

The complexity of predicting composite behavior is compounded by multiple scales (micro,

macro, and laminate), fabrication process induced variations, inherent uncertainties occurring

in the constituent properties, and an aggressive loading environment. Successful utilization of

polymer matrix composites in aerospace structures hinges largely upon the ability to predict and

assure their long term behavior. Current practices depends largely on conducting long term

testing of materials and components. However, it is time consuming and expensive to conduct

a large number of long term tests to capture the effects of all the design variables and loads.

Furthermore, accounting for the above discussed uncertainties in the experiments is monetarily

infeasible proposition. Therefore in light of these reasons, realization of the full potential of

composite materials is more likely to be achieved with the real innovative computational

approaches capable of handling these aspects in an ihtegrated manner. Also such computational
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procedures could aid in identifying critical experiments to be performed as well as reduce the

number of tests to be conducted to a manageable number.

Traditional computational approaches are deterministic in nature which do not account for

uncertainties associated with composite structures and materials. The focus of ongoing research

at the NASA Lewis Research Center has been to develop advanced integrated computational

methods and related computer codes to perform a complete probabilistic assessment of composite

structures. These methods account for uncertainties in all the constituent properties, fabrication

process variables and loads to predict probabilistic micro, ply, laminate and structural responses.

These methods have already been implemented in the Integrated Probabilistic Assessment of

Composite Stru.ctures (IPACS) 1 computer code. More details of IPACS code are given in the

next section.

This paper deals with developing a probabilistic computational simulation methodology to predict

reliability based long term behavior in polymer matrix composites and implementing it in the

ICAN 2 computer code. A unified time, stress and load dependent multi-_factor interaction

equation (MFIE) model developed at the NASA Lewis Research Center 4 has been used to

simulate the long term behavior of polymer matrix composites.

To illustrate the developed methodology a graphite fiber and epoxy matrix composite system is

considered. The methodology can also be applied to other types of PMCs as well. The

cumulative probability distribution functions (CDF) for the fatigue life cycles of a (0/+45/90)s

t



graphite/epoxy laminate are computed for different applied stress to laminate strength based on

fast ply failure criteria (hereinafter referred to as laminate strength) ratios. First ply failure

criteria assumes that the laminate has failed when any stress component in a ply exceeds its

respective allowable. Using these CDFs a fatigue life cycle curve for a reliability of 0.999 is

obtained in order to demonstrate how this methodology can be used to aid the designer. Also,

the sensitivity of fatigue life to the primitive random variables are computed for a reliability of

0.999.

Computational Simulation

Prediction of long term behavior of PMCs using fundamental governing field equations in the

time variable facilitates tracking the uncertainties in random variables throughout the load

history. The approach used herein incorporates the micro mechanics theory, time dependent

multi-factor interaction equation model, and fast probability integration techniques 5 to account

for the physical process of manufacturing a composite material, mechanics governing the

individual constituent behavior, their interactions, and constituent property degradation due to

aggressive load effects. The following sections describe the developed/modified computer codes

and procedures used in the computational simulation of probabilistic long term behavior in

PMCs.

Integrated Composite Analyzer: The Integrated Composite Analyzer, ICAN computationally

simulates the material behavior of polymer matrix composites from fiber/matrix constituents to



the laminate scaleincluding fabrication effects (Figure 1). ICAN usesadvancedcomposite

micro-mechanicsandlaminateanalysisbasedon linearelastictheoryto computeconstituent,ply,

andlaminatescalepropertiesandstressesrequiredfor global structuralanalysis(Left handside

of Figure 1). ICAN hasanupdatableresidentdatabasecontainingroomtemperatureproperties

of commonlyavailablefibers and matrices. The user needs to input just the names of fibers and

matrices used in the laminate which reduces the time required to input the data and eliminates

errors. ICAN also decomposes the global structural response to laminate, ply and constituent

response levels which helps the user evaluate failure (right hand side of figure 1). Details of

the ICAN computer code are given in reference 6. ICAN also performs the failure analysis

based on different failure criteria such as first ply failure criteria, fiber break criteria, etc.

Failures analysis uses modified distortion energy method or Hoffman's criteria.

For long term behavior prediction the ICAN computer code was modified to implement the time

dependent multi-factor interaction equation and perform sensitivity evaluation for primitive

random variables. The MFIE model evaluates the degradation magnitude of the constituent

material properties at every time step which in turn is used for micro-mechanics and laminate

analysis at each step. Sensitivity evaluations of response variables to the random variables at

every time step are also performed to compute the respective scatter in response variables.

Also, at every time step a failure analysis based on first ply failure and fiber break criteria is

performed to determine whether the laminate can take any further load. Failure analysis

determines the possible failure modes and maximum load capacity in the respective failure mode.

The analysis stops when the laminate is incapable of carrying any more load. In addition, a data



base is created to store results required to perform probabilistic life analysisand develop

reliability basedlife assessmentof PMCs. Thus, the current version of ICAN is capableof

performingprobabilistictimevariableanalysisto incorporatematerialdegradationdueto thermal

and mechanicalcyclic loads.

Time Dependent M_.ulti-Factor I_nteraction Equation (TMFIE) Model:

It is known that predicting the behavior of composite materials is a difficult task. Accounting

for all the physical effects and how they affect the material properties in the time domain is even

more complex. Over the years, research in developing a unified law describing the material

behavior driven by primitive variables has been an on going activity at NASA Lewis Research

Center. The result of this research is the development of a unified multi-factor interaction

equation model 7.

Concepts used in the above referred publication have been expanded to include time dependent

degradation effect on material behavior due to environmental, fabrication and load effects 4. A

generic form of the above equation is given by:

N_n Iv.-vl"
,.l [v -VoJ,

(1)



where

M

V

N

Sf

aM

Or

superscripts

a

subscripts

P

i

F

O

material

primitive variable for a material or

load e.g. temperature, stress, mechanical cycles, etc.

number of effects

Final strength i.e. strength of material before cyclic load is applied

Mechanical cyclic stress

Thermal cyclic stress

material exponent for a given variable

material property

variable effect i

condition at the final stage

condition at the reference stage

Each term in parenthesis accounts for a specific physical effect. Any number of effects can be

included in one single equation as seen by the nature of the equation. The exponents are

determined from the available experimental data or estimated from the anticipated material

behavior due to a particular primitive variable. Each primitive variable and the exponent in the

above equation can be random with a statistical distribution. The insufficiency of a set of

7



experimental data can be taken into account by means of uncertainties in the exponent.

An important part of the above model is the fact that only one equation can include all the

effects with any non-linearity in the material behavior and follow the physics of behavior. It can

describe all the interacting effects of different variables (thermal, metallurgical, mechanical,

chemical and load). Since variables used are at a primitive level, it simulates the in situ

degradation in material properties due to applied cyclic and environmental effects. The specific

form of the equation used in this paper to account for time dependent degradation is:

/ T \0.5r_- rl-o,/",_ L s,) L s/s)

s/% ) L sy_ )

(2)

where:

P - Property, T- temperature, S - strength, o - stress, N - number of cycles, t - time

subscripts:

gw - wet glass transition temperature, o - reference condition,

mechanical load, T - thermal cyclic load.

f- final condition, M -



Note that in this paperthermal cyclic loadshavenot beenconsidered.

mechanicalcyclic loadshavebeenconsidered.

Only the time effect of

Probabilistic Simulation:

An advanced first order second moment fast probability integration technique 5 is used to compute

cumulative probability distribution function of the fatigue life. Results of the random variable

perturbations are used to compute the CDF of responses. Fast 12robability _integration (FPI)

technique is very efficient compared to Monte-Carlo simulation technique. FPI does not

generate random samples nut uses the numerical integration technique to compute the joint

probability and probability of failures. It transforms the physical random variable space system

into unit normal space to perform probability integration easily and more accurately. On the

other hand Monte-carlo method generates a large number of random samples to compute

probability of response. Thus, Monte-Carlo method requires many runs to evaluate to response

whereas FPI needs selective runs to generate the response surface. Hence, the FPI is

computationaly economical than Monte-Carlo. The sensitivity of responses are also computed

by FPI. Sensitivity information help improve the design and quality.

Simulation Cases, Results and Discussion

Demonstration examples include only mechanical cyclic load, as mentioned before. However,

the methodology is generic in nature and=accounts for all types Of loads including thermal



fatigue. A (0/+45/90)s laminate made of graphite fibers and epoxy matrix is subjected to

uniaxial tensile cyclic load as shown in figure 2. The load shown in Figure 2 is sinusoidal.

However, the shape does not matter because exponent value in MFIE accounts for the shape.

Each ply has a thickness of 0.005 in (each direction has 25 plies thus the total thickness in each

direction is 0.125 in). The mean values of all the fiber and matrix properties are given in Table

1. Initially, the laminate was subjected to a mean static load and failure analysis was performed

to evaluate static laminate strength. It was found to be 63.0 ksi based on first ply failure

criteria. Since the aim of this paper is to develop fatigue life cycles, the laminate was subjected

to different applied stress to strength ratios, r. In the following, the computation of a

deterministic (mean value) and a 0.999 reliability based fatigue life cycle curves are described.

For the deterministic case typical life cycle curves for all the plies were computed. However

for the sake of brevity, only the results for a 90 ° ply are reported since 900 ply failed first among

all the plies. Figure 3 shows the life cycle curve for 900 ply when longitudinal stress exceeds

corresponding strength whereas figure 4 shows life cycle curves when transverse stress exceeds

transverse strength. It is seen from these figures that the failure is dominated by the longitudinal

stress in 90 ° ply. Also, it is obvious from these figures that the fatigue life reduces at a rapid

rate for failure against longitudinal stress in 90 ° ply as compared to that against transverse stress.

Since 90 o ply failed first and the longitudinal stresses dominate the fatigue life, Figure 3

represents the fatigue life curve for the entire laminate.

Probabilistic fatigue life cycle evaluation was performed in two stages to reduce the

w
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computationaltime. The ftrst stageinvolved performing the preliminary analysisto determine

significant variables governing the life. Preliminary probabilistic analysisconsidersall the

primitive randomvariablesrelatedto fiber and matrix properties,lay up angle, ply thickness,

fiber volume ratio and void volume ratio. The scatter(rangeof variation) for thesevariables

wasassumedto be5 % andnormally distributedaslisted in Table 1. The preliminary analysis

involved a few sensitivity evaluationsanda probabilisticanalysisfor extremeappliedstressto

ftrst ply strengthload. Basedon thepreliminary analysisresults(not reportedherefor brevity)

it was found that longitudinal fiber modulus, matrix modulus, matrix tensile strength, fiber

volume ratio and the ply thicknesscontrolled the fatigue life of the laminate.

As discussed above a final probabilistic fatigue life analysis was performed for a mean applied

maximum stress to mean first ply strength ratio, r of 0.6, 0.7, 0.8 and 0.9. Cumulative

probability distribution function (CDF) curves for each r value were obtained. Figures 5a

through 8a depict CDF for r values of 0.6, 0.7, 0.8 and 0.9 respectively. Also, the

corresponding sensitivity of random variables are plotted respectively in Figures 5b through 8b.

Computations show that the scatter in fatigue life for r values of 0.6, 0.7, 0.8 and 0.9 was 14.84

%, 15.23%, 15.46% and 15.87 % respectively. Thus as the r value increases, the amount of

scatter in the fatigue life increases at a very low rate. Also, for a probability of failure equal

to 0.001 ( meaning that a reliability of 0.999 OR only 1 out of 1000 laminates has chance of

failing), the fatigue life for r values of 0.6, 0.7, 0.8 and 0.9 are 51%, 35.6 %, 25.65 % and

18.86 % of the endurance limit (Nine, defined as the maximum stress level at which material can
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resist up to 1,000,000 cycles of load) respectively. Figures 5b through 8b also show the

sensitivity of fatigue life to the random variables for r values of 0.6, 0.7, 0.8 and 0.9

respectively for a reliability of 0.999. These figures show that the uncertainty in the fatigue life

is more sensitive to the scatter in the thickness followed by matrix tensile strength, fiber volume

ratio, longitudinal fiber modulus and matrix modulus at all r values. Therefore, it can be said

that the increase in r value decreases the fatigue life but the scatter remains the same for all

practical purposes.

An important inference from figures 5 through 8 would be that for all r values, if the design

reliability requirement is higher than 0.999, the scatter in the ply thickness, matrix tensile

strength and fiber volume ratio must be reduced by using a tighter quality control. The

usefulness of the obtained CDF curves is demonstrated by developing a reliability based fatigue

life design curves. Figure 9 shows a fatigue life curve for a reliability of 0.999. The designer

can obtain fatigue life for a reliability of 0.999 directly by knowing the magnitude of the applied

stress to first ply strength ratio or for a given number of cycles the maximum load on the

laminate can be obtained.

Conclusion

A methodology to compute the probabilistic fatigue life of polymer matrix composites has been

developed, implemented in the in-house computer code ICAN and demonstrated by examples.

The methodology incorporates the ICAN computer :code, a generic time dependent multi factor
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interactionequation model and fast probability integration technique. Also, the developed

methodologyhasbeenimplementedin ICAN computercode to facilitate its integration with

IPACS computer code to perform probabilistic compositestructural analysis. Cumulative

distribution functions of fatigue life cyclesfor a (0/+45/90)s Graphite/Epoxy laminateunder

uniaxial tensile load were computed. Sensitivitiesof fatigue life with 0.999 reliability were

plotted. A fatigue life curve for 0.999 reliability wasgenerated. It was observedthat for a

reliability of 0.999 the life of the laminatesubjectedto 60 % of its f'trst ply strengthin tension

is half the "endurancelimit". Thefatiguelife at 0.999reliability wasmost sensitiveto thickness

and matrix tensilestrengthsincetensionfailure in 900 ply controls the life. Also, the average

scatter in fatigue at all applied stress to strength ratios was about 14.5 %. The reliability based

fatigue curves are useful in determining allowable load on the structure or assessing the life of

a given component. Sensitivity information provides guidelines to the designer to improve the

reliability of the structure's fatigue life.
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Table 1 Uncertainties in the Primitive Variables for Graphite/Epoxy

Composites

Uncertain Variable Mean Value Scatter Distribution Type

Fiber:

Normal Modulus, Enl 31 mpsi 5% Normal

2.0 mpsi

1.0 mpsi 5 % Normal

400 ksi 5 % Normal

400 ksi 5 % Normal

0.5 mpsi 5 % Normal

0.35 5 % Normal

15.0 ksi 5 % Normal

35.0 ksi 5 % Normal

13.0 ksi 5 % Normal

60 % 5 % Normal

2 % 5 % Normal

0.125 5 % Normal

Normal

Normal Modulus, Er22 2 mpsi 5 % Normal

Poisson's ratio, _2 0.20 5 % Normal

Poisson's ratio, v23 0.25 5 % Normal

5 % NormalShear Modulus, Gn2

Shear Modulus, Gm

Tensile strength, Srr

Compressive strength, Sfc

Matrix:

Normal Modulus, Em

Poisson's ratio, Vm

Tensile strength, Star

Compressive strength, S_c

Shear strength, S_

Fabrication variables:

Fiber volume ratio

Void volume ratio

Ply Thickness

Ply misalignment 0 0
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Figure 2 Description of mechanical cyclic load
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